

DEVELOPMENT OF A COLLEGIATE ROBOTIC FOOTBALL CONFERENCE (CRFC) TEAM THROUGH SENIOR PROJECTS

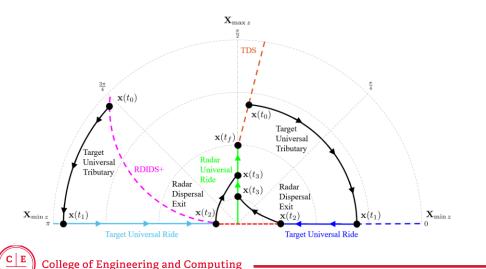
Dr. Brian Swanson

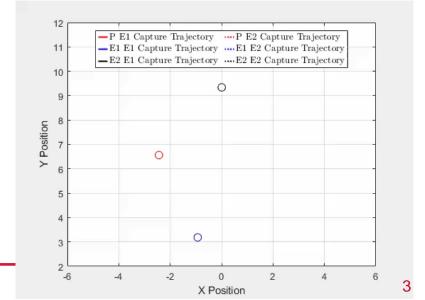
Assistant Professor, ECE Department IEEE Cincinnati Meeting, October 23, 2025

PROFESSIONAL BACKGROUND

Brian Swanson, PhD

- 2013 Kings High School, Kings Mills, OH
- 2017 BSEE Ohio Northern University, Ada, OH
- 2020 MS University of Cincinnati, Cincinnati, OH
- 2024 PhD University of Cincinnati, Cincinnati, OH
- 2024- Hired as Assistant Professor at Miami!



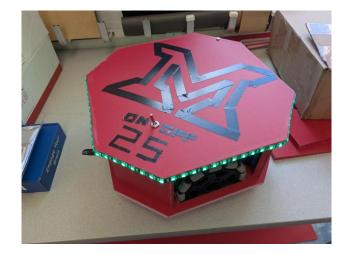


RESEARCH BACKGROUND

- Develop controller for dynamic adversarial systems
 - Optimal control theory and differential game theory
 - * Mathematical framework to develop guaranteed optimal controllers!
 - Graduate work focused on singular surfaces
 - **❖** Non-intuitive behaviors that guarantee optimality!
 - Looking to take theoretical solutions to practical implementations
 - Develop heuristic methods to calculate "good enough" controllers

OVERVIEW

- CRFC Background
 - Participating institutions
 - Events
 - Rules
- Senior Project 2024-2025
 - Design specifications
 - Calculations
 - Design
 - Engineering lessons learned
- Senior Project 2025-2026
 - Design specifications
 - Initial calculations and design
- Future Direction



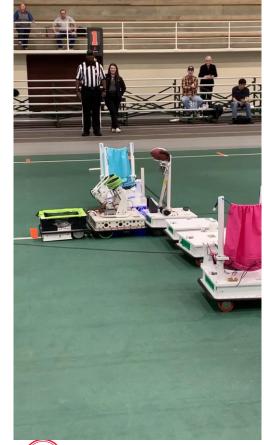
COLLEGIATE ROBOTIC FOOTBALL CONFERENCE

- Collegiate Robotic Football Conference (CRFC)
 - Founded by Ohio Northern and University of Notre Dame
 - 12 teams to date
 - Ran by CRFC organization
 - Compete in two annual events
 - ❖ Fall combine
 - Spring national championship

CRFC EVENTS

- Fall Combine
 - Saturday November 15th, 2025, 9:00 am
 - @ Notre Dame University
 - Streamed live on YouTube https://www.youtube.com/@CRFC./featured
 - Positional challenges (QB, WR, RB, Line)
 - General challenges (Most weight, fastest, etc.)
- Spring National Championship
 - Saturday April 5th, 2026 @ Notre Dame University
 - Streamed live on YouTube
 - Seeding determined by winner of combine
 - Compete for the Brian Hederman Memorial trophy

CRFC RULES


- Spelled out in official CRFC rulebook (updated annually)
- Gameplay
 - 8 on 8 game between teams of remotely controlled robots
 - Adheres to official NCAA football rules
 - Ball-carrying robots quipped with tackle sensor and status LED's
 - Can pass and throw the ball fumbles and interceptions happen too!
 - Extra points for completing passes
- Design Rules
 - Max 24V circuitry
 - Mechanical kill switch
 - Baseplate material and height
 - Max 30lb weight (45lb for QB and K)
 - Players must fit within 16"x16"x24" box (except K and C)
 - K and C have additional constraints

CRFC Proprietary
Tackle Sensor

CRFC IN ACTION

SENIOR PROJECT 2024-2025

- Project Goal Design a robot that is eligible to compete in all CRFC events
 - Safety rules
 - Weight and height constraints
 - Material constraints
 - Circuitry constraints
 - Tackle sensor integration
 - Wireless communication
 - Motor control algorithm

2024-2025 Senior Design Team

NECESSARY CALCULATIONS

- To complete the design of this robot, students were expected to calculate
 - Necessary torque and rpm for motors
 - Necessary capacity of batteries
 - Total weight of robot

MOTOR SELECTION CALCULATIONS

Motor Calculations:

$$\mu_f = 0.8$$
 (Coefficient of Friction)

$$F = m * a$$

$$F_g = 13.6078 \, kg * 9.8 \, m/s^2 = 133.36 \, N$$
 (Gravitational Force)

$$F_f = 133.36 N * 0.8 = 106.69 N$$
 (Frictional Force)

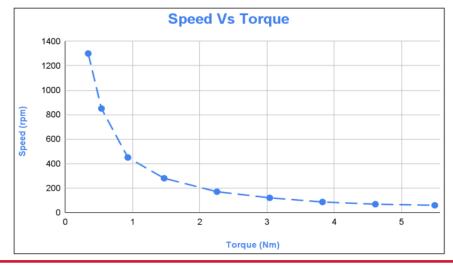
$$F_a = (13.6078 kg * 0.9 m/s^2) = 12.247 N$$
 (Acceleration Force)

$$F_{TOT} = F_f + F_a = 106.69 N + 12.247 N = 118.937 N$$
 (Total Force)

$$\tau_{TOT} = F_{TOT} * r$$

$$\tau_{TOT} = 118.937 N * 0.0762 m = 9.063 Nm$$
 (Total Torque)

$$\tau = 9.063 \, Nm / 4 = 2.266 \, Nm$$
 (Torque per Motor)


$$\omega_{max} = (4.5 \, m/s^2 / 0.0762 \, m) * (60 \, s / 1 \, min) * (1 \, rev / 2\pi \, rad) = 563.935 \, rpm$$
 (Required RPM)

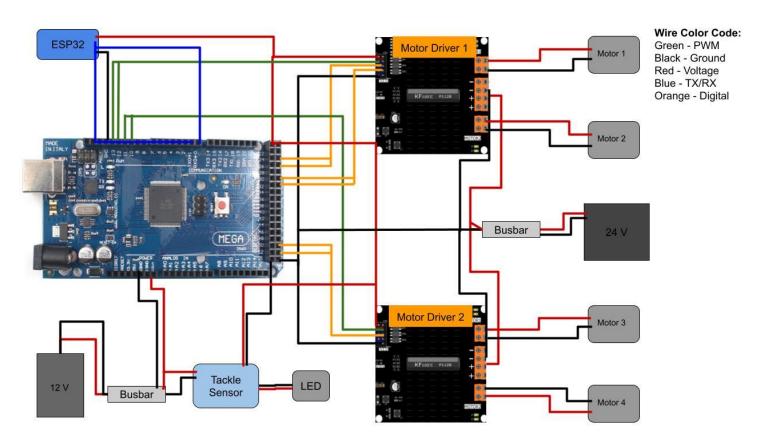
$$W = 563.935 * (2\pi rad / 60 s) = 59.06 rad/s$$
 (Angular Speed)

$$P = \tau * W = 2.266 Nm * 59.06 rad/s = 133.83 W$$
 (Power per Motor)

$$I = P / V = 133.83 W / 24 V = 5.5763 A$$
 (Current Draw per Motor)

Motor (Gear Ratio)	Speed (rpm)	Torque (Nm)
6.3 : 1	1300	0.343
10:1	850	0.54
19:1	450	0.932
30 : 1	280	1.471
50 : 1	170	2.256
70 : 1	120	3.04
100 : 1	86	3.824
131 : 1	68	4.61
150 : 1	59	5.492

ELECTRONICS

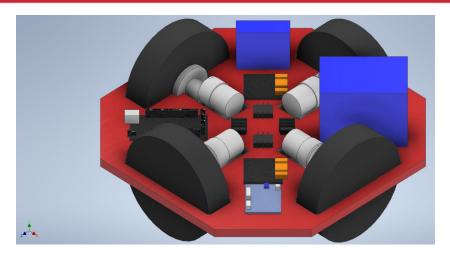


- The complete electrical system consisted of the following components:
 - Arduino Mega microcontroller motor control
 - ESP32 microcontroller Bluetooth communication with PS4 controller
 - Motor drivers
 - Tackle sensor module
 - Batteries
 - Kill-switch
 - Motors

SYSTEM SCHEMATIC

CONTROL ALGORITHMS

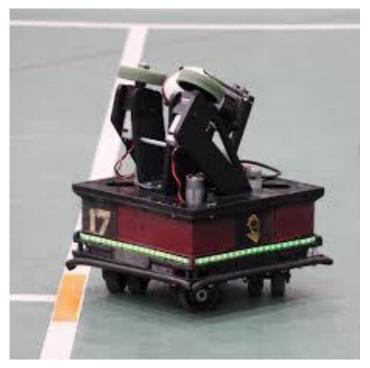
- ESP-32
 - Bluetooth communication with PS4 controller
 - USART transmit to Arduino Mega
- Arduino Mega
 - USART receive from ESP-32
 - Motor control algorithm (omniwheels)



MECHANICAL CAD

CAD INCLUDES
ELECTRONICS, BATTERIES,
MOTORS, etc.

PAINFUL LESSONS


- A week before the final design expo, disaster struck!
- Arduino 5V regulator failure
 - Fully charged battery exceeded maximum input voltage
- Fix Individual regulators for each microcontroller
 - Isolate each component!

SENIOR PROJECT 2025-2026

- Project Goal Design a QB module to attach to existing robot
 - Variable distance
 - Variable direction
 - Receiver detection
 - Throw/handoff option
 - Modularity
- Auxiliary goals
 - Improve Bluetooth connectivity issues
 - Basic maintenance

Calvin University QB

INITIAL CALCULATIONS & DESIGN

- Once again, students needed to calculate RPM and torque for launch motors
- Students encountered RPM vs Torque problem
 - Introduced to gearing and gear motors
 - Discussion of stall current/torque, no-load current, and motor efficiency

General specifications

Gear ratio:	6.25:1
No-load speed @ 24V:	1600 rpm
No-load current @ 24V:	0.1 A
Stall current @ 24V:	3 A ³
Stall torque @ 24V:	3.5 kg⋅cm ³
Max output power @ 24V:	14 W
No-load speed @ 12V:	820 rpm <u>4</u>
No-load current @ 12V:	0.08 A 4
Stall current @ 12V:	1.7 A ⁴
Stall torque @ 12V:	1.9 kg⋅cm <u>4</u>
Motor type:	24V

Performance at maximum efficiency

Max efficiency @ 24V:	53 %
Speed at max efficiency:	1300 rpm
Torque at max efficiency:	0.55 kg·cm
Current at max efficiency:	0.58 A
Output power at max efficiency:	7.4 W

INITIAL DESIGN

- Students have ordered parts and are beginning their first prototype
- Focused on developing a method to feed ball into the launcher
 - Also want to have a "trap door" that allows for hand-offs
 - Design may evolve to allow for quick passes to beat the blitz

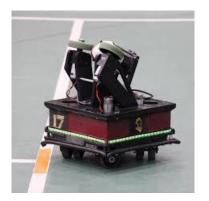


Image generated by Copilot, October 23, 2025, Microsoft, https://copilot.microsoft.com/

FUTURE WORK & DIRECTION

- Marry Miami robotics club with senior projects
 - Robotics club develop full team
 - Senior projects develop specific functionality (e.g. QB target tracking)
- QB compete in 2026 Fall Combine
- Full Team compete in 2028
 National Championship!

Image generated by Copilot, October 22, 2025, Microsoft, https://copilot.microsoft.com/

